The given are:
`a_1=80`
`a_(k+1) = (-1/2)a_k`
To determine the first five terms of the geometric sequence, plug-in the values k=1,2,3,4 to the given recursive formula.
When k=1, the nth term is:
`a_(1+1)=(-1/2)a_1`
`a_2=(-1/2)*80`
`a_2=-40`
When k=2, the nth term is:
`a_(2+1)=(-1/2)a_2`
`a_3=(-1/2)*(-40)`
`a_3=20`
When k=3, the nth term is:
`a_(3+1)=(-1/2)a_3`
`a_4=(-1/2)*20`
`a_4=-10`
And when k=4, the nth term is:
`a_(4+1)=(-1/2)a_4`
`a_5=(-1/2)*(-10)`
`a_5=5`
Therefore, the first five terms of the geometric sequence are `{80, -40,...
The given are:
`a_1=80`
`a_(k+1) = (-1/2)a_k`
To determine the first five terms of the geometric sequence, plug-in the values k=1,2,3,4 to the given recursive formula.
When k=1, the nth term is:
`a_(1+1)=(-1/2)a_1`
`a_2=(-1/2)*80`
`a_2=-40`
When k=2, the nth term is:
`a_(2+1)=(-1/2)a_2`
`a_3=(-1/2)*(-40)`
`a_3=20`
When k=3, the nth term is:
`a_(3+1)=(-1/2)a_3`
`a_4=(-1/2)*20`
`a_4=-10`
And when k=4, the nth term is:
`a_(4+1)=(-1/2)a_4`
`a_5=(-1/2)*(-10)`
`a_5=5`
Therefore, the first five terms of the geometric sequence are `{80, -40, 20, -10, 5}` .
To determine the common ratio, apply the formula:
`r=a_(n+1)/a_n`
So the ratio of the consecutive terms of the geometric sequence is:
`r=a_5/a_4=5/(-10)=-1/2`
`r=a_4/a_3=(-10)/20=-1/2`
`r=a_3/a_2=20/(-40)=-1/2`
`r=a_2/a_1=(-40)/80=-1/2`
Thus, the common ratio of the geometric sequence is `-1/2` .
To determine the nth term of geometric sequence, apply the formula:
`a_n=a_1*r^(n-1)`
Plugging in the values of a1 and r, the formula becomes:
`a_n=80*(-1/2)^(n-1)`
Hence, the nth term rule of this geometric sequence is `a_n=80*(-1/2)^(n-1)` .
No comments:
Post a Comment